zingen/masm/mod.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
//! MacroAssembler used by the code generation.
use crate::{
asm::Assembler,
wasm::{ToLSBytes, Type},
Error, Result,
};
use smallvec::SmallVec;
use std::ops::{Deref, DerefMut};
mod cmp;
mod embed;
mod float;
mod integer;
mod memory;
mod ret;
mod stack;
/// EVM MacroAssembler.
#[derive(Default, Debug, Clone)]
pub struct MacroAssembler {
/// Low level assembler.
pub(crate) asm: Assembler,
}
impl Deref for MacroAssembler {
type Target = Assembler;
fn deref(&self) -> &Self::Target {
&self.asm
}
}
impl DerefMut for MacroAssembler {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.asm
}
}
/// Info for memory position.
pub struct MemoryInfo {
/// Memory offset.
pub offset: SmallVec<[u8; 8]>,
/// Memory size
pub size: usize,
}
impl MacroAssembler {
/// Store data in memory with at current memory byte pointer.
pub fn memory_write(&mut self, ty: impl Type) -> Result<MemoryInfo> {
let offset = self.mp.to_ls_bytes();
// mock the memory usages.
let size = ty.align();
self.increment_mp(size)?;
// write memory
self.memory_write_at(&offset)?;
Ok(MemoryInfo { offset, size })
}
/// Write bytes to memory.
pub fn memory_write_bytes(&mut self, bytes: &[u8]) -> Result<MemoryInfo> {
let len = bytes.len();
// TODO: if len is out of 32.
self.push(bytes)?;
self.memory_write(len)
}
/// Store data in memory at offset.
///
/// Returns the size in the lowest significant bytes.
pub fn memory_write_at(&mut self, offset: &[u8]) -> Result<()> {
self.push(offset)?;
self._mstore()?;
Ok(())
}
/// Get the current program counter offset.
pub fn pc_offset(&self) -> u16 {
self.asm.buffer().len() as u16
}
/// Place n bytes on stack.
pub fn push(&mut self, bytes: &[u8]) -> Result<()> {
tracing::trace!("push bytes: 0x{}", hex::encode(bytes));
// TODO: support PUSH0 #247
//
// if !bytes.iter().any(|b| *b != 0) {
// self.asm._push0()?;
// return Ok(());
// }
let len = bytes.len();
match len {
0 => self.asm._push0(),
1 => self.asm._push1(),
2 => self.asm._push2(),
3 => self.asm._push3(),
4 => self.asm._push4(),
5 => self.asm._push5(),
6 => self.asm._push6(),
7 => self.asm._push7(),
8 => self.asm._push8(),
9 => self.asm._push9(),
10 => self.asm._push10(),
11 => self.asm._push11(),
12 => self.asm._push12(),
13 => self.asm._push13(),
14 => self.asm._push14(),
15 => self.asm._push15(),
16 => self.asm._push16(),
17 => self.asm._push17(),
18 => self.asm._push18(),
19 => self.asm._push19(),
20 => self.asm._push20(),
21 => self.asm._push21(),
22 => self.asm._push22(),
23 => self.asm._push23(),
24 => self.asm._push24(),
25 => self.asm._push25(),
26 => self.asm._push26(),
27 => self.asm._push27(),
28 => self.asm._push28(),
29 => self.asm._push29(),
30 => self.asm._push30(),
31 => self.asm._push31(),
32 => self.asm._push32(),
_ => return Err(Error::StackIndexOutOfRange(len as u8)),
}?;
self.asm.emitn(bytes);
Ok(())
}
/// Get byte offset of the memory pointer.
pub fn mp_offset<F>(&self, f: F) -> Result<SmallVec<[u8; 8]>>
where
F: Fn(usize) -> Result<usize>,
{
Ok(f(self.mp)?.to_ls_bytes())
}
/// Get the stack pointer.
pub fn sp(&self) -> u8 {
self.asm.sp
}
/// Swap memory by target index.
pub fn swap(&mut self, index: u8) -> Result<()> {
tracing::trace!("swap index: {}", index);
match index {
0 => Ok(()),
1 => self.asm._swap1(),
2 => self.asm._swap2(),
3 => self.asm._swap3(),
4 => self.asm._swap4(),
5 => self.asm._swap5(),
6 => self.asm._swap6(),
7 => self.asm._swap7(),
8 => self.asm._swap8(),
9 => self.asm._swap9(),
10 => self.asm._swap10(),
11 => self.asm._swap11(),
12 => self.asm._swap12(),
13 => self.asm._swap13(),
14 => self.asm._swap14(),
15 => self.asm._swap15(),
16 => self.asm._swap16(),
_ => Err(Error::StackIndexOutOfRange(index)),
}
}
/// Duplicate stack item by target index.
pub fn dup(&mut self, index: u8) -> Result<()> {
tracing::trace!("dup index: {}", index);
match index {
0 => Ok(()),
1 => self.asm._dup1(),
2 => self.asm._dup2(),
3 => self.asm._dup3(),
4 => self.asm._dup4(),
5 => self.asm._dup5(),
6 => self.asm._dup6(),
7 => self.asm._dup7(),
8 => self.asm._dup8(),
9 => self.asm._dup9(),
10 => self.asm._dup10(),
11 => self.asm._dup11(),
12 => self.asm._dup12(),
13 => self.asm._dup13(),
14 => self.asm._dup14(),
15 => self.asm._dup15(),
16 => self.asm._dup16(),
_ => Err(Error::StackIndexOutOfRange(index)),
}
}
/// Shift the program counter to the bottom or the top of the
/// parameters. This is used by the callee function for jumping
/// back to the caller function.
pub fn shift_stack(&mut self, count: u8, from_top: bool) -> Result<()> {
let mut swaps = 0;
if from_top {
swaps = count;
while swaps > 0 {
self.swap(swaps)?;
swaps -= 1;
}
} else {
// TODO: Optimize the shift logic when params lt 2.
//
// 3 means two swaps, base gas cost is 6, which means
// using DUP will be cheaper: DUPN + POP = 3 + 2 = 5
// in total.
//
// if count > 2 {}
while swaps < count {
swaps += 1;
self.swap(swaps)?;
}
}
Ok(())
}
/// Return zero or more values from the function.
///
/// The return instruction is a shortcut for an unconditional
/// branch to the outermost block, which implicitly is the body
/// of the current function.
///
/// NOTE: This `return` could be different from the `return` in
/// the EVM.
pub fn _return(&mut self) -> Result<()> {
todo!()
}
}