zingen/masm/
mod.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//! MacroAssembler used by the code generation.

use crate::{
    asm::Assembler,
    wasm::{ToLSBytes, Type},
    Error, Result,
};
use smallvec::SmallVec;
use std::ops::{Deref, DerefMut};

mod cmp;
mod embed;
mod float;
mod integer;
mod memory;
mod ret;
mod stack;

/// EVM MacroAssembler.
#[derive(Default, Debug, Clone)]
pub struct MacroAssembler {
    /// Low level assembler.
    pub(crate) asm: Assembler,
}

impl Deref for MacroAssembler {
    type Target = Assembler;

    fn deref(&self) -> &Self::Target {
        &self.asm
    }
}

impl DerefMut for MacroAssembler {
    fn deref_mut(&mut self) -> &mut Self::Target {
        &mut self.asm
    }
}

/// Info for memory position.
pub struct MemoryInfo {
    /// Memory offset.
    pub offset: SmallVec<[u8; 8]>,

    /// Memory size
    pub size: usize,
}

impl MacroAssembler {
    /// Store data in memory with at current memory byte pointer.
    pub fn memory_write(&mut self, ty: impl Type) -> Result<MemoryInfo> {
        let offset = self.mp.to_ls_bytes();

        // mock the memory usages.
        let size = ty.align();
        self.increment_mp(size)?;

        // write memory
        self.memory_write_at(&offset)?;
        Ok(MemoryInfo { offset, size })
    }

    /// Write bytes to memory.
    pub fn memory_write_bytes(&mut self, bytes: &[u8]) -> Result<MemoryInfo> {
        let len = bytes.len();

        // TODO: if len is out of 32.
        self.push(bytes)?;
        self.memory_write(len)
    }

    /// Store data in memory at offset.
    ///
    /// Returns the size in the lowest significant bytes.
    pub fn memory_write_at(&mut self, offset: &[u8]) -> Result<()> {
        self.push(offset)?;
        self._mstore()?;

        Ok(())
    }

    /// Get the current program counter offset.
    pub fn pc_offset(&self) -> u16 {
        self.asm.buffer().len() as u16
    }

    /// Place n bytes on stack.
    pub fn push(&mut self, bytes: &[u8]) -> Result<()> {
        tracing::trace!("push bytes: 0x{}", hex::encode(bytes));

        // TODO: support PUSH0 #247
        //
        // if !bytes.iter().any(|b| *b != 0) {
        //     self.asm._push0()?;
        //     return Ok(());
        // }

        let len = bytes.len();
        match len {
            0 => self.asm._push0(),
            1 => self.asm._push1(),
            2 => self.asm._push2(),
            3 => self.asm._push3(),
            4 => self.asm._push4(),
            5 => self.asm._push5(),
            6 => self.asm._push6(),
            7 => self.asm._push7(),
            8 => self.asm._push8(),
            9 => self.asm._push9(),
            10 => self.asm._push10(),
            11 => self.asm._push11(),
            12 => self.asm._push12(),
            13 => self.asm._push13(),
            14 => self.asm._push14(),
            15 => self.asm._push15(),
            16 => self.asm._push16(),
            17 => self.asm._push17(),
            18 => self.asm._push18(),
            19 => self.asm._push19(),
            20 => self.asm._push20(),
            21 => self.asm._push21(),
            22 => self.asm._push22(),
            23 => self.asm._push23(),
            24 => self.asm._push24(),
            25 => self.asm._push25(),
            26 => self.asm._push26(),
            27 => self.asm._push27(),
            28 => self.asm._push28(),
            29 => self.asm._push29(),
            30 => self.asm._push30(),
            31 => self.asm._push31(),
            32 => self.asm._push32(),
            _ => return Err(Error::StackIndexOutOfRange(len as u8)),
        }?;

        self.asm.emitn(bytes);
        Ok(())
    }

    /// Get byte offset of the memory pointer.
    pub fn mp_offset<F>(&self, f: F) -> Result<SmallVec<[u8; 8]>>
    where
        F: Fn(usize) -> Result<usize>,
    {
        Ok(f(self.mp)?.to_ls_bytes())
    }

    /// Get the stack pointer.
    pub fn sp(&self) -> u8 {
        self.asm.sp
    }

    /// Swap memory by target index.
    pub fn swap(&mut self, index: u8) -> Result<()> {
        tracing::trace!("swap index: {}", index);
        match index {
            0 => Ok(()),
            1 => self.asm._swap1(),
            2 => self.asm._swap2(),
            3 => self.asm._swap3(),
            4 => self.asm._swap4(),
            5 => self.asm._swap5(),
            6 => self.asm._swap6(),
            7 => self.asm._swap7(),
            8 => self.asm._swap8(),
            9 => self.asm._swap9(),
            10 => self.asm._swap10(),
            11 => self.asm._swap11(),
            12 => self.asm._swap12(),
            13 => self.asm._swap13(),
            14 => self.asm._swap14(),
            15 => self.asm._swap15(),
            16 => self.asm._swap16(),
            _ => Err(Error::StackIndexOutOfRange(index)),
        }
    }

    /// Duplicate stack item by target index.
    pub fn dup(&mut self, index: u8) -> Result<()> {
        tracing::trace!("dup index: {}", index);
        match index {
            0 => Ok(()),
            1 => self.asm._dup1(),
            2 => self.asm._dup2(),
            3 => self.asm._dup3(),
            4 => self.asm._dup4(),
            5 => self.asm._dup5(),
            6 => self.asm._dup6(),
            7 => self.asm._dup7(),
            8 => self.asm._dup8(),
            9 => self.asm._dup9(),
            10 => self.asm._dup10(),
            11 => self.asm._dup11(),
            12 => self.asm._dup12(),
            13 => self.asm._dup13(),
            14 => self.asm._dup14(),
            15 => self.asm._dup15(),
            16 => self.asm._dup16(),
            _ => Err(Error::StackIndexOutOfRange(index)),
        }
    }

    /// Shift the program counter to the bottom or the top of the
    /// parameters. This is used by the callee function for jumping
    /// back to the caller function.
    pub fn shift_stack(&mut self, count: u8, from_top: bool) -> Result<()> {
        let mut swaps = 0;

        if from_top {
            swaps = count;
            while swaps > 0 {
                self.swap(swaps)?;
                swaps -= 1;
            }
        } else {
            // TODO: Optimize the shift logic when params lt 2.
            //
            // 3 means two swaps, base gas cost is 6, which means
            // using DUP will be cheaper: DUPN + POP = 3 + 2 = 5
            // in total.
            //
            // if count > 2 {}
            while swaps < count {
                swaps += 1;
                self.swap(swaps)?;
            }
        }

        Ok(())
    }

    /// Return zero or more values from the function.
    ///
    /// The return instruction is a shortcut for an unconditional
    /// branch to the outermost block, which implicitly is the body
    /// of the current function.
    ///
    /// NOTE: This `return` could be different from the `return` in
    /// the EVM.
    pub fn _return(&mut self) -> Result<()> {
        todo!()
    }
}